PHYSICAL REVIEW E 75, 012901 (2007)

Semianalytical transient solution of a delayed differential equation and its application
to the tracking motion in the sensory-motor system
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We derived semianalytically the transient solution of a delayed differential equation that had been shown to
be a simple but good model of the sensory-motor system. In the present Brief Report, we applied this transient
solution for studying the global nature of the transient tracking motion when visual target information is
changed suddenly. The results clarified that the dynamic error minimization principle in hand motion observed
experimentally is robust over a wide range of the parameter space of the delay time, the time constant, and the

feedforward parameter.
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The sensory-motor system of humans as well as other
animals is controlled by neural systems which have an inevi-
table delay, without some compensation mechanism in the
brain which generates appropriate behavior despite the delay
[1-5]. Recently, the authors demonstrated by psychophysical
experiments [6,7] involving a transient hand-tracking task
that the human visual-motor system operates not only pre-
dictively but also “proactively” for harmonic stimuli of a
finite frequency region. Proactive control means a brain
function by which motion precedes stimulus by an amount
needed to minimize the error adjusting to changes in speed
of the stimulus [6,7] (Fig. 1).

There have been a number of studies on the behavior of
the sensory-motor system using delayed differential equa-
tions, including visual tracking [8,9], auditory synchroniza-
tion [10], postural control [11], and pole balancing [12], etc.
The present authors also demonstrated by numerical simula-
tion that a model differential equation which includes a feed-
forward term with delay in addition to the feedback term
with delay showed proactive behavior, i.e., the dynamic error
minimization principle.

Robustness of the proactive behavior was also shown in
the hand-tracking task experiments in the previous paper;
both the amount of precedence of the hand in steady state
and the optimum value for the transient error varied from
subject to subject, interestingly with a strong correlation.
Therefore, it should be valuable to verify this robustness by
an analytical method, in spite of the preliminary evidence by
numerical simulation. Furthermore, analytical studies will
contribute to the theoretical understanding of the sensory-
motor system to know if and why a type of delayed differ-
ential equation with feedforward control mechanism robustly
shows proactive behavior. In this paper we derive by a per-
turbation method a transient solution of the delayed differen-
tial equation that we used for the simulation to compare with
experimental results in the previous paper, and show in fact
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that the solution demonstrates a proactive nature in a wide
parameter space.

The simplest expression of a delayed equation [13] in-
cluding a feedback and a feedforward term is

X(r) = lT[T(t— 8)-X(t-8)]+yI(t-9). (1)

Here, T and X denote the coordinates of the external stimulus
and the controlled signal, respectively, where 7 is the time
constant of the system and ¢ is the delay time of signal
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FIG. 1. Overview of hand-tracking experiments (from Ref. [6]).
(a) Frequency dependence of the mean phase lead of the hand with
respect to the target which moves sinusoidally with a given fre-
quency. For example, the phase lead is 0.06 within the error of
0.02 rad at 0.8 Hz. (b) An example of the transient error of the hand
position with respect to the target position for a subject with initial
frequency 0.8 Hz averaged over the final frequency of transition,
measured as a function of the phase-lead quantity at the last cycle
before the transition (LB cycle). The graph shows a minimum of the
transient error at around the phase lead of 0.06 rad. (c) Correlation
between the mean phase lead in a steady run and the optimum phase
lead in the LB cycle for minimum transition error for eight subjects.
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transport. This equation comprises a delayed error feedback
term and a speed feedforward term of the stimulus. In addi-
tion, 7y represents the relative contribution of the feedforward
information to the feedback information. In hand-tracking
tasks, T and X represent the target motion and the hand mo-
tion, respectively.

The steady phase shift ¢ of Eq. (1) for a sinusoidal target
motion 7(r)=exp(iwt) is expressed as follows:

Y= tan‘1< YOT— wT.cos wé— 'yzcu272 sin wé‘)' 2
1 — wTsin wd+ yw 7 cos wd

In a psychophysical experiment [Fig. 1(a)], the mean
value of the steady phase shift is positive, and it increases
with the target frequency up to a certain frequency and de-
creases abruptly thereafter. By expanding Eq. (2) with re-
spect to the target frequency, we found out that the first- and
third-order terms in the numerator and the second-order term
in the denominator of w7 and/or w4 should be positive, nega-
tive, and positive, respectively, in order to reproduce these
phase-lead behaviors in the steady state. These conditions for
v are expressed as follows:

y—1>0 and y-387>0. (3)

The transient experiment was designed such that the tar-
get frequency is kept at f| until =0 when it is switched to f5.
We write the transient solution in the form of Eq. (4),

X0 =§0X, (1) +[1-&01X0) (1= 9), (4)

&E0)=1, &+ »)=0 (i=12), (5)

where X, (f)=expli(w;t+¢,)] and X,(¢)=expli(w,t+ip,)] are
the stationary solutions of the hand motion with the target
frequencies f; and f,, respectively. The expression in this
form is similar to the formalism of the time-dependent per-
turbation theory used in quantum mechanics. Note that the
transient hand motion is X;(z) from =0 to =5 because of
causality.

By inserting Eq. (4) into Eq. (1), we obtained the follow-
ing equation:

A[E () +E,(0)]=0, (6)

where A=7d/dt+D is a linear operator with D as a delay
operator where Dx(f)=x(t-95), E,()=&(t)X,(r), and
E,(t)==&(1)X,(1). Equation (6) means that Z,(1)+2,(¢) is
the eigenfunction of A with eigenvalue 0. However,
the eigenfunction of the operator A is of the type &(r)
=exp[(—p+iq)(t— )], so E; and =, must independently be
the eigenfunction of the linear operator A, apart from the
coefficients which are determined by the continuity condi-
tions.

The values of p and Q (=¢+w;) are obtained from the
following equations:

(1)* +(rQ)* = €™, ()

Q/p =tan Q4. (8)
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FIG. 2. Solutions of Egs. (7) and (8) for p and Q at 6=0.1. (a)
p, where p is the solution for 7/ d=e, and p, and p, are the solu-
tions for 7/ 8>e. (b) Q. Here, the notations Figs. 3(a)-3(c) indicate
the conditions for Fig. 3.

No time scale argument appears in this deduction. Figures
2(a) and 2(b) show the values of p and Q that satisfy Egs. (7)
and (8) at 6=0.1. When 7/ 8=<e, p (=p,) increases with 7up
to =1/6. On the other hand, when 7/ > e, p has two values.
One (=p,) is greater than 1/ 6, and the other (=p)) is less than
1/6. Here, Q is always zero. Equations (7) and (8) allow a
negative value for p. However, negative p does not satisfy
the boundary condition given by Eq. (5).
Thus, &(1) is expressed as follows:

a4, P00 0110 | [l QN-0 (5= ).
gl(t) = Cie(—pu—iwi)(t—(s) + d,-e(_pl_iw")(t_a) (T/5> e).
)

The values of a;, b;, c;, and d; are determined by the position
and velocity continuity conditions at = 4.

Figure 3 demonstrates some examples of the semianalyti-
cal transient solution together with the numerical solution for
choices of initial and final target frequencies. Figures 3(a)
and 3(b) illustrate examples for the condition 7/ 5<e, and
Fig. 3(c) shows an example for the condition 7/ 5> e.

All of the results show that the solution obtained by the
present perturbation method is similar to that obtained by
direct numerical simulation under any conditions. That is, the
semianalytical transient solution obtained by using the
present perturbation analysis is a good approximation of the
transient behavior in hand tracking.

In the following we calculate the transient error of the
hand motion with respect to the target motion just after the
frequency jump by using the semianalytical transient solu-
tion [Eq. (4)]. The time duration from the frequency change
to rest in the stationary state can be regarded as the time
constant (1/p, or 1/p;) of the coefficient &(r). The expected
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FIG. 3. Results of a comparison between the analytical and nu-
merical solutions. The thick black solid line and the thin gray solid
line represent the analytical solution [Eq. (4)] and the numerical
solution of Eq. (1), respectively. The dotted line represents the tar-
get motion. 7=(a) 0.1, (b) 0.25, and (c) 0.4. The values of y and
are 1.5 and 0.1, respectively. The insets illustrate the frequency
condition for each case. The curve in the inset represents the target
frequency (f) dependence of the steady phase shift (i).

transient error was calculated as the average value over the
final frequency. The following transient error (£7) is used for
comparison with the hand-tracking experiments:

o

where Pr(f5) is the probability that the final state frequency is
f>, and f. denotes the cutoff frequency in the phase shift
profile.

Figure 4(a) shows the transient error as a function of the
initial phase ¢;,; where we assume that Pr(f,) is a constant.
The error curve calculated by Eq. (10) exhibits a parabolic
characteristic with the minimum at a small positive phase.
This minimum can be determined easily with the estimated
error. Furthermore, the profile of the error curve is in good
agreement with that of the experimental results [Fig. 1(b)].

Figure 4(b) illustrates the correlation between the steady
phase shift before the transition and the phase shift corre-
sponding to the minimum transient error for the various val-
ues of y. The present results show that these two quantities
correlate for a wide range of y of the delayed equation within
the numerical error. The steady phase shift corresponds to the
optimum phase shift to achieve the minimum transient error
within the maximum estimated error in the hand-tracking

1/p 172
p f IT(t)—X(t)lzdr) Pr(fy)df,,  (10)
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FIG. 4. (a) Transient error as a function of the initial phase. The
initial frequency (f}) is 0.32 Hz. The values of v, 7, and § are 1.5,
0.1, and 0.1, respectively. We varied the initial phase shift in simu-
lation and calculated the transient error by Eq. (10). Then we se-
lected the initial phase shift which minimizes the transient error (the
optimum phase shift). (b) Correlation between the optimum initial
phase shift thus obtained and the steady phase shift obtained by Eq.
(2) for difference values of y (1.1=7y=2.0). The initial frequency
is the same as that for (a). The error bar is 0.035 rad, which is the
maximum estimated error in the hand-tracking experiment [Fig.
1(c)]. The values of 7 and & are 0.1 and 0.1, respectively. (c) Pa-
rameter space in which proactive control is guaranteed. Here, f;
=]7pU/ 2 D_‘pv=(1/4) n wu(Y)dy], where f,, denotes the frequency at
which the phase shift with precedence takes peak values.

experiments [Fig. 1(c)]. The delayed feedforward (DFF)
model [Eq. (1)] reproduces the dynamic error minimization
principle of proactive control. Furthermore, this correlation
profile is similar to that of the experimental result. The
phase-lead value for each subject differs from that of other
subjects. The results shown in Fig. 4(b) suggest that this
discrepancy among the subjects can be represented by the
difference in the value of 7y, which is the strength of the
contribution of the target speed recognition in a visual sys-
tem.

Figure 4(c) shows the parameter space of (y,7,d) such
that the optimum phase shift corresponds to the steady phase
shift within the maximum estimated error (0.035 rad). We
can see that there is a wide proactive region when 7is greater
than &. In this region y>1 is the only condition for positive
steady phase shift [Eq. (3)]. When 7 is in the vicinity of &,
proactive control is guaranteed in the range of y between 1.0
and approximately 2.1. On the other hand, when 7 is far from
o, the range of vy is reduced between 1.0 and 1.1. This result
indicates that systems in which 7 approaches 6 have the abil-
ity to robustly employ proactive control to minimize the tran-
sient error.
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In the present Brief Report, we have clarified the follow-
ing two points. (1) A semianalytical transient solution of a
delayed differential equation derived by a perturbation
method was found to show an excellent agreement with di-
rect numerical simulation. (2) Using this transient solution it
was possible to demonstrate the robustness of proactive be-
havior of the model equation for a wide range of parameter
space, suggesting that the delayed differential equation with
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feedforward term is useful for studying the sensory-motor
system.
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